MINISTRY OF EDUCATION AND SCIENCE REPUBLIC OF KAZAKHSTAN

KAZAKH NATIONAL TECHNICAL UNIVERSITY named after K.I.SATPAYEV

Module reference book or collection of module descriptions in the specialty 7M07103 ''Materials science and technology of new materials''

A module reference book or a collection of module descriptions, which is also available to students for review, should contain the following information about individual modules:

Module designation	Profile training module
Semester(s) in which the	Autumn, spring (1,2)
module is taught	
The person responsible	Telesheva Asel Bolatovna
for the module	
Language	Kazakh, Russian
Attitude to the	Mandatory
curriculum	
Teaching methods	Lecture, practical work, independent work of a
	graduate student.
Workload (including	(Approximately) Total workload:
contact hours, self-study	270 hours
hours)	Lectures 45
	Practical 90
	I 135
	Contact hours (please specify lectures, exercises,
	laboratory classes, etc.):
	Private training with exam preparation,
	indicated in hours 1:
Credits	18
Necessary and	Intermediate english, Philosophy
recommended	
prerequisites for joining	
the module	

Module expected outcomes	objectives / learning	The purpose of the module is to study, using a philosophical approach, the foundations and boundaries of science and technology, the laws of their development, prospects and strategies for future existence. Formation of professionally
		oriented communicative competence of undergraduates, which allows them to integrate into the international professional environment and use professional English as a means of intercultural and professional communication. And also the study of the basics of education management, management of global educational processes and the basics of management
		psychology. The master's student will be able to identify and analyze the connections, correlation between natural science, technical and philosophical fields of knowledge, their mutual determination, place and role in culture. He will know the main problems of modern science and technology, the prospects for new discoveries, and outline ways out of the crisis of man-made civilization.
		Know the basics of education management, management of global educational processes.

Description	The description of the content should clearly indicate the main directions and the level of complexity.
	Familiarization of undergraduates with the history of the formation and development of science, technology, its conceptual basis; to present the foundations and structure of science, technology; to consider the features of the current stage of development of science and its prospects; to substantiate the principles and laws of categorical thinking in the field of science; to analyze methods and procedures of scientific cognition; to present basic natural science theories within the boundaries of mega-; macro-; microcosm; to determine the philosophical foundations and boundaries of technology; to demonstrate the diversity of meanings of technology and ways of its
	implementation. Study of the basics of education management, management of global educational processes, analysis and selection of strategic initiatives, project as a strategy for managing the development of an educational institution/organization. Also, undergraduates will study education marketing, human resource management in educational organizations,
	information and communication technologies in the field of education and educational process management (using the example of higher education). Teaching the basics of management psychology. Specifics of management psychology, psychological patterns of managerial activity, personality and its potential in the management system: motivation and affectiveness in the
	system; motivation and effectiveness in the organization, leadership and leadership in modern management of organizations, social group as an object of management, psychological foundations of managerial decision-making, business communication and managerial conflicts, psychology of responsibility, image creation as an integral part of the culture of communication, psychology of advertising.

Exams and	assessment	Two written/oral intermediate tests (30 minutes
formats		each) and one final oral exam (40 minutes),
		short computer quizzes, written homework
		The module exams are conducted in the format
		of test tasks. The test consists of several sections,
		each of which is allocated a certain amount of
		time and points at the discretion of the teacher,
		but the total time allocated to the student to
		provide an answer to the exam ticket should not
		exceed 120 minutes, and the maximum number
		of points is 40. And also the teacher adheres to
		the following evaluation criteria:

Requirements for studies	Requirements for successful completion of the
and exams	module, for example, the final assessment of the
	module consists of 60% of academic
	performance in exams, 10% of quizzes, 10% of
	homework, 10% of class participation. To pass
	the exam, students must have a final grade of 60% or bigher
	60% or higher. Admission of students to the exam in the
	discipline is carried out automatically:
	- based on the assessment of the admission
	rating, determined by the results of the current
	and boundary control of academic performance
	(the total number of required semester points is
	at least 25 for two attestations);
	- those who have no outstanding tuition fees;
	- those who do not have more than 20% of
	skipping classes in the discipline;
	- not being on academic leave or academic
	break;
	those who do not have an overdue medical
	examination. The final assessment of the discipline includes
	assessments of current academic performance
	and final control. The assessment of current
	academic performance (admission rating) is
	60% of the final assessment of knowledge in the
	discipline, the assessment of the exam is 40% of
	the final assessment of knowledge in this
	discipline. Thus, the final grade for each
	discipline is determined as the sum of the points
	scored by the student according to the results of
	the current and boundary performance controls
	(rating - maximum 60 points, minimum 25
	points) and the exam (final control - maximum
	40 points, minimum 20 points), which together
	makes up a maximum of 100 points.

Reading list	1) Valiano M.V. History and Philosophy of
Reading list	Science [Electronic resource]: Textbook.
	Moscow: Alfa-M; Moscow: LLC ''INFRA-M
	Scientific and Publishing Center'', 2015 208 p.
	(EBS "INFRA-M")
	2) Bessonov B.N. History and Philosophy of
	• • •
	science: textbook. manual / B. N. Bessonov
	Moscow: Yu Wright: I D Yurite, 2010 394, [6]
	p.
	3) History and Philosophy of Science = History
	and Philosophy of Science: studies. manual /
	under the general editorship of S. A. Lebedev
	Moscow: Acad. Project: Alma Mater, 2007
	606, [2] p.
	4) Ostrovsky E.V. History and philosophy of
	science: studies. handbook for university
	students / E. V. Ostrovsky Moscow: UNITY-
	DANA, 2007 159, [1] p
	. 5) V. L. Kaushanskaya, R. L. Kovner, O. N.
	Kozhevnikova, E. V. Prokofiev, 3. M. Raines, S.
	E. Skvirskaya, F. Ya. Tsyrlina grammar of the
	English language6) English for academic study:
	Reading and Writing. Source Book Slaght J.,
	Harben P., Pallant A. University of Reading
	2006
	7) Listening Extra. Resource book Miles
	Craven. Cambridge University Press 2004
	8) Bordovskaya N.V., Rean A.A. Pedagogy, St.
	Petersburg, 2008
	9) Isaev I.F. Professional and pedagogical
	culture of a teacher: Textbook. for university
	students. M., 2003.
	10) Shane E. Organizational culture and
	leadership. St. Petersburg Publishing House, St.
	Petersburg, 2002.

Module designation	Practice-oriented module
Semester(s) in which the	Spring (2,4)
module is taught	
The person responsible	Telesheva Asel Bolatovna
for the module	
Language	Kazakh, Russian
Attitude to the	Specialization
curriculum	
Teaching methods	Conducting experiments and methods of
	processing experimental studies.
	Methods of teaching special disciplines.
Workload (including	(Approximately) Total workload:
contact hours, self-study	165 hours
hours)	Contact hours (please specify lectures, exercises, laboratory classes, etc.):
	Private training with exam preparation, indicated
	in hours 1:
Credits	11
Necessary and	
recommended	
prerequisites for joining	
the module	
Цели модуля /	Consolidation of pedagogical skills in the
предполагаемые	educational environment (college, institute,
результаты обучения	university) and conducting research.
	Obtaining skills for conducting classes, using
	elements of interactive, distance learning.
	The hay question in What learning outcomes
	The key question is: What learning outcomes should students achieve in the module?
	For example, from the point of view of:
	- Knowledge: familiarity with information, theory
	and/or subject knowledge
	Skills: cognitive and practical abilities, for the
	development of which knowledge is used.
	- Competencies: integration of knowledge, skills,
	social and methodological abilities in work or
	training situations2.
	<i>For example: "Students know that / can / can"</i>

Description	The description of the content should clearly indicate the main directions and the level of complexity. Passing pedagogical practice in the conditions of an educational organization, conducting lectures, practical and laboratory classes. Passing of research practice in the conditions of scientific laboratories and the organization of the scientific and educational sphere.
Exams and assessment formats	Two written/oral intermediate tests (30 minutes each) and one final oral exam (40 minutes), short computer quizzes, written homework Writing and protecting a report on the work done
Requirements for studies and exams	Requirements for successful completion of the module, for example, the final assessment of the module consists of 60% of academic performance in exams, 10% of quizzes, 10% of homework, 10% of class participation. To pass the exam, students must have a final grade of 60% or higher.
Reading list	1) Methodical instruction on conducting research practice of undergraduates of specialty 6M07100 - "Materials science and technology of new materials", KazNRTU, 2015

Module designation	Professional Engineering Training module
Semester(s) in which the	Autumn, spring (1,2)
module is taught	
The person responsible	Telesheva Asel Bolatovna
for the module	
Language	Kazakh, Russian
Attitude to the	Specialization
curriculum	
Teaching methods	Lecture, practical work, independent work of a graduate student.

Workload (including contact hours, self-study hours)	(Approximately) Total workload: 270 hours Lectures 90 Practical 45 SRS 135 <i>Contact hours (please specify lectures, exercises, laboratory classes, etc.):</i> <i>Private training with exam preparation, indicated in hours 1:</i>
Credits	18
Necessary and recommended prerequisites for joining the module	Physics II, Mathematics II, Materials Science and Advanced Materials
Module objectives / expected learning outcomes	The purpose of the module is to familiarize undergraduates with innovations in the field of installation, commissioning, MRO, monitoring and diagnostics of technical condition. Will know the essence of innovative solutions, calculation methods with elements of research. Be able to put into practice innovative solutions in the above areas using modern technical means and digital technologies. The key question is: What learning outcomes should students achieve in the module? For example. from the point of view of: - Knowledge: familiarity with information, theory and/or subject knowledge Skills: cognitive and practical abilities, for the development of which knowledge is used. - Competencies: integration of knowledge, skills, social and methodological abilities in work or training situations2. For example: "Students know that / can / can"

Description	The description of the content should clearly
Description	indicate the main directions and the level of
	-
	complexity.
	Physical theories and concepts to explain
	structural patterns in materials; complexes of
	physical and mechanical properties of
	materials and technological methods of
	changing them by influencing structural
	parameters; technological route maps of
	technological processes; principles of rational
	choice of materials to ensure their optimal use
	in structures and products; information
	sources, databases for solving professional
	problems; methods of conducting, analysis
	and evaluation of experimental research
	results; ways of creating new materials and
	their processing. analysis of the structure and
	properties of a certain class of materials using
	modern research methods and scientific
	instruments (electro-physical, optical, electron
	microscopic, X-ray); modeling of the structure
	and properties of materials based on
	mathematical processing of research results
	and the use of software products of materials
	science in solving real problems and problems
	of science and production; selection and use
	of materials in technological processes of
	machine-building, energy, oil and gas and
	other industries, including modern 3D
	technologies; assessment of the quality of
	materials taking into account operational,
	environmental and economic requirements.

Exams and assessment	Two written/oral intermediate tests (30
formats	minutes each) and one final oral exam (40
	minutes), short computer quizzes, written
	homework
	The module exams are conducted in
	writing. The examination ticket consists of 3
	questions (situational tasks, calculations), for
	each of which, at the discretion of the teacher, a
	certain amount of time and points are allocated,
	however, the total time allocated to the student
	to provide an answer to the examination ticket
	should not exceed 120 minutes, and the
	maximum number of points is 40. And also the
	teacher adheres to the following evaluation
	criteria:
	1. Accuracy – 35%.
	2. Completeness of the solution of the
	problem – 35%.
	3. Creativity and originality – 30%.

Requirements for studies and exams	Requirements for successful completion of the module, for example, the final assessment of the module consists of 60% of academic performance in exams, 10% of quizzes, 10% of homework, 10% of class participation. To pass the exam, students must have a final grade of 60% or higher. Admission of students to the exam in the discipline is carried out automatically: - based on the assessment of the admission rating, determined by the results of the current and boundary control of academic performance (the total number of required semester points is at least 25 for two attestations); - those who have no outstanding tuition fees; - those who do not have more than 20% of skipping classes in the discipline; - not being on academic leave or academic break; those who do not have an overdue medical examination. The final assessment of the discipline includes assessments of current academic performance and final control. The assessment of current academic performance (admission rating) is 60% of the final assessment of knowledge in the discipline, the assessment of knowledge in the discipline. Thus, the final grade for each discipline is determined as the sum of the points scored by the student according to the results of the current and
	knowledge in the discipline, the assessment of the exam is 40% of the final assessment of knowledge in this discipline. Thus, the final grade for each discipline is determined as the

Reading list	1	Materials science / B.N. Arzamasov,
Reading list	1.	
		V.I. Makarova, G.G. Mukhin, etc.
		Under the general editorship of B.N.
		Arzamasov, G.G. Mukhin. – 3rd ed.,
		reworked. and additional – M.:
		Publishing House of the Bauman
		Moscow State Technical University,
		2001. – 648 p.
	2.	Adaskin, A.M. Materials Science
		(metalworking): Textbook / A.M.
		Adaskin M.: Academy, 2018
		240c.
	3.	Adaskin, A.M. Materials science and
		technology of metallic, nonmetallic
		and composite materials: Textbook /
		A.M. Adaskin, A.N. Krasnovsky
		M.: Forum, 2011 144 p.
	Δ	Arzamasov, B.N. Materials science /
	т.	B.N. Arzamasov M.: MSTU , 2008.
	5.	- 648 p. Bonderenko, C.C. Meteriola Science
	5.	
		/ G.G. Bondarenko M.: Higher
		School, 2007 360 c
	6.	
		Almaty. Kazntu. 2007376s.
	7.	
		M.I. Drozd M.: Rior, 2013 604 c

Module designation	Module of innovative technologies
Semester(s) in which the	Autumn, spring (1,2,3)
module is taught	
The person responsible	Telesheva Asel Bolatovna
for the module	
Language	Kazakh, Russian
Attitude to the	Specialization
curriculum	
Teaching methods	Lecture, practical work, calculations.
Workload (including	(Approximately) Total workload:
contact hours, self-study	630 hours
hours)	Lectures 210
	Practical 105
	IWS 315
	Contact hours (please specify lectures, exercises,
	laboratory classes, etc.):
	Private training with exam preparation, indicated
	in hours 1:
Credits	42
Necessary and	Physics II, Mathematics II, Technological
recommended	quality assurance of materials. Materials for 3d
prerequisites for joining	technology. Physico-chemical methods of
the module	materials research. New functional materials.
	Multiphase structures and methods for
	calculating phase diagrams. Engineering of
	surface materials. Methodology of selection of
	materials and technology selection

Module objectives /	The purpose of the module is to familiarize
expected learning	undergraduates with applied aspects, to form
outcomes	undergraduates' ideas about the mechanisms
	and patterns of creating composite and powder
	materials, to obtain a set of knowledge about the
	relationship of technological parameters with
	the structure and properties of materials for 3D
	modeling, as well as to study the quality
	indicators of materials that determine its
	performance in products of a specific purpose
	The master's student will know: an idea of the
	current state of the theory of phase transitions,
	trends in further development; know the laws
	and concepts of physical chemistry; be able to
	analyze phase changes occurring in pure metals
	and multicomponent systems; possess the skills
	of constructing and calculating phase diagrams
	of multicomponent metal systems.
	The key question is: What learning outcomes
	should students achieve in the module?
	For example. from the point of view of:
	- Knowledge: familiarity with information,
	theory and/or subject knowledge
	Skills: cognitive and practical abilities, for the
	development of which knowledge is used.
	- Competencies: integration of knowledge, skills,
	social and methodological abilities in work or
	training situations2.
	For example: "Undergraduates know that they
	can''

Description	The description of the content should clearly
	indicate the main directions and the level of
	complexity.
	Studying the possibilities of technological quality
	assurance of materials for the manufacture of
	technical products, the course of the discipline also
	includes the analysis of the causes of quality
	decline at different stages of the design of the
	technological process; methods of monitoring
	(diagnostics) of the state of the material, its defects
	associated with the violation of technological
	processes; methods of improving the quality of
	materials in the technological process of
	manufacturing parts and structures. Processes in
	the field of theory and practice of using composite,
	powder materials, modern scientific concepts on
	mechanics and physics of molding and sintering
	processes in order to create a material for 3D
	technologies with a set of specified properties.
	Obtaining and using composite and powder
	materials, as well as presenting the mechanism and
	patterns of materials for 3D modeling, their
	advantages, disadvantages and main areas of
	application.
	To find ways to scientifically control the phase
	composition, structure and properties of alloys,
	further theoretical and experimental studies of
	various phase transitions in liquid, solid metals and
	alloys are necessary. Theoretical studies of phase
	equilibria in multicomponent metal systems,
	calculation and prediction of state diagrams have
	now acquired a large scope. Computational
	methods make it possible to attract achievements of
	theoretical physics, computer technology and
	advances in research of thermodynamic and
	physical properties of alloys to the construction of
	state diagrams.
	The choice of optimal materials for technical
	products and their rational use in production is
	possible only on the basis of knowledge of the
	structure and properties of materials, methods of
	assessing their quality. Therefore, this course of the
	discipline summarizes the totality of theoretical
	knowledge and practical techniques used in
	specific technologies As a result of studying this
	discipline, the methodological culture of a bachelor
	in the field of engineering and technology in the
	materials science field of training increases. The

Exams and assessment	Two written/oral intermediate tests (30 minutes
formats	each) and one final oral exam (40 minutes),
	short computer quizzes, written homework
	The module exams are conducted in writing.
	The examination ticket consists of 3 questions
	(theory, situational problems, calculations), for
	each of which, at the discretion of the teacher, a
	certain amount of time and points are allocated,
	however, the total time allocated to the student
	to provide an answer to the examination ticket
	should not exceed 120 minutes, and the
	maximum number of points is 40. And also the
	teacher adheres to the following evaluation
	criteria:
	1. Accuracy – 35%.
	2. Completeness of the solution of the problem –
	35%.
	3. Creativity and originality – 30%.

Requirements for studies and exams	Requirements for successful completion of the module , for example, the final assessment of the module consists of 60% of academic performance in exams, 10% of quizzes, 10% of homework, 10% of class participation. To pass the exam, students must have a final grade of 60% or higher. Admission of students to the exam in the discipline is carried out automatically: - based on the assessment of the admission rating, determined by the results of the current and boundary control of academic performance (the total number of required semester points is at least 25 for two attestations); - those who have no outstanding tuition fees; - those who do not have more than 20% of skipping classes in the discipline; - not being on academic leave or academic break; those who do not have an overdue medical examination. The final assessment of the discipline includes assessments of current academic performance and final control. The assessment of current academic performance (admission rating) is 60% of the final assessment of knowledge in the discipline, the assessment of knowledge in the discipline. Thus, the final grade for each discipline is determined as the sum of the points scored by the student according to the results of the current and boundary performance controls (rating - maximum 60 points, minimum 25 points) and the exam (final control - maximum 40 points, minimum 20 points), which together makes up a
	the exam is 40% of the final assessment of knowledge in this discipline. Thus, the final grade for each discipline is determined as the sum of the points scored by the student according to the results of the current and boundary performance controls (rating - maximum 60 points, minimum 25 points) and the exam (final control - maximum 40 points,

Reading list	1. 1) Barabanshchikov Yu.G. Material science and technology of structural materials / Yu.G. Barabanshchikov. – St. Petersburg : Publishing House of the
	Polytechnic University. un-ta, 2006. – 150
	 p. 2. 2) Nikulin, S.A. Materials science: special steels and alloys: Textbook / S.A. Nikulin, N.Y. Turiling, M. MISIS, 2012, 122 p.
	V.Y. Turilina M.: MISIS, 2013 123 p.
	3. 3) Adaskin, A.M. Materials science and
	technology of materials: Textbook / A.M.
	Adaskin, V.M. Zuev M.: Forum, SIC
	Infra-M, 2013 336 p.
	4. 4) Metallurgy and heat treatment. Reference edition in 3 volumes / Edited by
	A.G. Rahstadt. – M. :
	Intermetengineering, 2014
	5. Bochvar, A.A. Fundamentals of heat
	treatment of alloys. – M.: Metallurgy
	Media, 2018 779 p.
	6. 5) Dmitrenko, V.P. Materials science in
	mechanical engineering: Textbook / V.P.
	Dmitrenko, N.B. Manuilova M.: Infra-
	M, 2017 560 c
	7. Zemskov, Yu.P. Material science: A
	textbook / Yu.P. Zemskov St.
	Petersburg: Lan, 2019 188 c
	8. 6) Foster L. (2008) Nanotechnology.
	Science, innovations and opportunities.
	Moscow: Technosphere.
	9. 7) Zemskov, Yu.P. Material Science:
	Textbook / Yu.P. Zemskov St.
	Petersburg: Lan, 2019 188 p.
	10. 8) Kramm, M.N. Welding Materials
	Science. Melting welding: A textbook /
	M.N. Kramm St. Petersburg: Lan, 2016.
	- 168 p.

Module designation	Научно-исследовательский модуль
Semester(s) in which the	Осень, весна (1,2,3,4)
module is taught	
The person responsible	Telesheva Asel Bolatovna
for the module	
Language	Kazakh, Russian
Attitude to the	Specialization
curriculum	
Teaching methods	Research work of a master's student, including internship and completion of a master's thesis
Workload (including	(Approximately) Total workload:
contact hours, self-study	360 hours
hours)	
	Contact hours (please specify lectures, exercises,
	laboratory classes, etc.):
	Private training with exam preparation, indicated
	in hours 1:
Credits	24
Necessary and	-
recommended	
prerequisites for joining the module	
Module objectives /	The purpose of the module is to develop working
expected learning	skills in a research environment.
outcomes	Willingness to work independently, the ability to
	manage your time, plan and organize activities.
	The key question is: What learning outcomes
	should students achieve in the module?
	For example. from the point of view of:
	- Knowledge: familiarity with information,
	theory and/or subject knowledge
	Skills: cognitive and practical abilities, for the
	development of which knowledge is used.
	- Competencies: integration of knowledge, skills,
	social and methodological abilities in work or
	training situations2.
	For example: "Students know that / can / can"

Description	The description of the content should clearly indicate the main directions and the level of complexity. Research work, research, experiments,, writing an article, internships, including foreign
	ones and writing a master's thesis.
Exams and assessment formats	Two written/oral intermediate tests (30 minutes each) and one final oral exam (40 minutes), short computer quizzes, written homework Writing a report on scientific internships, publishing articles
Requirements for studies and exams	Requirements for successful completion of the module, for example, the final assessment of the module consists of 60% of academic performance in exams, 10% of quizzes, 10% of homework, 10% of class participation. To pass the exam, students must have a final grade of 60% or higher.
Reading list	In the direction of research of the topic of the
	dissertation